e What is the Injection Energy Associated
with Shock Acceleration?

e Does it depend on Shock-Normal Angle?

e \What is the Acceleration Rate?

SHINE, Big Sky, MT, June 2004



Simplified Shock Geometry
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In order for particles to be accelerated by the shock — efficiently — they
must remain near the shock.

In the ABSENCE of scattering, particles can remain ahead of the
shock only if their speed, w is such that

w > Viseclp,

where V7 is the shock speed.

This implies a STRONG dependence on 603,




BUT IS THIS A GOOD APPROXIMATION?



AMBIENT FLUCTUATIONS

The coherence scale of the interplanetary magnetic field is about
0.01 AU (determined from power spectra)
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A picture of the fields & flow near a shock at 1 AU
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The Limit of Diffusive Shock Acceleration

Diffusive shock-acceleration theory is valid if the anisotropy is small.
The general expression is:
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The Limit of Diffusive Shock Acceleration (cont.)

Case 1. Parallel shock (63, — 0)
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Case 2. Perpendicular Shock (05, — 90)
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The Limit of Diffusive Shock Acceleration (cont.)

Classical-scattering theory gives

= > 1 (for most astrophysical applications)

Thus, the classical-scattering theory predicts

Win, > 3U1()\H/7“g)



The Limit of Diffusive Shock Acceleration (cont.)

Classical-scattering theory gives

= > 1 (for most astrophysical applications)

Thus, the classical-scattering theory predicts

Win, > 3U1()\H/7“g)

HOWEVER, classical-scattering theory is NOT a good approximation
for perpendicular transport!



Test-particle simulations using synthesized magnetic turbulence
(Giacalone and Jokipii, ApJ, 1999 + one extra point)
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For a perpendicular shock, the injection velocity is given by
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= The SAME as for a parallel shock.



The Physics of self-excited waves is also affected by large-scale
fluctuations — the time scale for wave growth and upstream
scale length depend on the local geometry.
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We wish to study particle acceleration and transport near a shock
without invoking diffusive transport

In order to do this, we need to synthesize the turbulent fields.

There are two obvious ways to proceed:

1. Turbulent (“rippled”) shock + magnetic field

turns out to be difficult

2. Planar (or spherical) shock + turbulent magnetic field



Modeling a shock moving through a turbulent medium




Model Geometry

shock



Model Fields




Model Results
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Model Results
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Model Results

at 10 R, 50,000 Q;l ~ 6 minutes
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Model Results
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CAN SHOCK ACCELERATION THEORY EXPLAIN THOSE
EVENTS IN WHICH FE/O INCREASES WITH ENERGY?



CAN SHOCK ACCELERATION THEORY EXPLAIN THOSE
EVENTS IN WHICH FE/O INCREASES WITH ENERGY?

POSSIBLY YES — USING COMPRESSION ACCELERATION



Consider a gradual plasma compression — NOT A SHOCK (e.g. CIRs
at 1AU)




Acceleration of Fe and O at a gradual compression (three different
charge states are considered)
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Conclusions

1. For the case of strong IMF fluctuations (AB? ~ B) with a
coherence scale of 0.01 AU, the injection velocity for shock acceleration
Is WEAKLY dependent on shock-normal angle.

2. Perpendicular shocks are more rapid accelerators of charged
particles than parallel shocks — although the acceleration rate at a
parallel shock is higher than expected from simple classical scattering
theory.

3. Unusual enhancements of Fe/O may be due to acceleration at
compression regions.



